Fibroblast growth factors induce additional limb development from the flank of chick embryos

نویسندگان

  • Martin J Cohn
  • Juan Carlos Izpisúa-Belmonte
  • Helen Abud
  • John K Heath
  • Cheryll Tickle
چکیده

Fibroblast growth factors (FGFs) act as signals in the developing limb and can maintain proliferation of limb bud mesenchyme cells. Remarkably, beads soaked in FGF-1, FGF-2, or FGF-4 and placed in the presumptive flank of chick embryos induce formation of ectopic limb buds, which can develop into complete limbs. The entire flank can produce additional limbs, but generally wings are formed anteriorly and legs posteriorly. FGF application activates Sonic hedgehog in cells with polarizing potential to make a discrete polarizing region. Hoxd-13 is also expressed in the ectopic bud, and an apical ectodermal ridge forms. A limb bud is thus established that can generate the appropriate signals to develop into a complete limb. The additional limbs have reversed polarity. This can be explained by the distribution of cells in the flank with potential polarizing activity. The results suggest that local production of an FGF may initiate limb development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb.

Fibroblast Growth Factors (FGFs) are signaling molecules that are important in patterning and growth control during vertebrate limb development. Beads soaked in FGF-1, FGF-2 and FGF-4 are able to induce additional limbs when applied to the flank of young chick embryos (Cohn, M.J., Izpisua-Belmonte, J-C., Abud, H., Heath, J. K., Tickle, C. (1995) Cell 80, 739-746). However, biochemical and expre...

متن کامل

Distribution of polarizing activity and potential for limb formation in mouse and chick embryos and possible relationships to polydactyly.

A central feature of the tetrapod body plan is that two pairs of limbs develop at specific positions along the head-to-tail axis. However, the potential to form limbs in chick embryos is more widespread. This could have implications for understanding the basis of limb abnormalities. Here we extend the analysis to mouse embryos and examine systematically the potential of tissues in different reg...

متن کامل

WNT Signals Control FGF-Dependent Limb Initiation and AER Induction in the Chick Embryo

A regulatory loop between the fibroblast growth factors FGF-8 and FGF-10 plays a key role in limb initiation and AER induction in vertebrate embryos. Here, we show that three WNT factors signaling through beta-catenin act as key regulators of the FGF-8/FGF-10 loop. The Wnt-2b gene is expressed in the intermediate mesoderm and the lateral plate mesoderm in the presumptive chick forelimb region. ...

متن کامل

Correlation of wing-leg identity in ectopic FGF-induced chimeric limbs with the differential expression of chick Tbx5 and Tbx4.

It has been reported that members of the fibroblast growth factor (FGF) family can induce additional limb formation in the flank of chick embryos. The phenotype of the ectopic limb depends on the somite level at which it forms: limbs in the anterior flank resemble wings, whereas those in the posterior flank resemble legs. Ectopic limbs located in the mid-flank appear chimeric, possessing charac...

متن کامل

FGF and genes encoding transcription factors in early limb specification

SnR, twist and Fgf10 are expressed in presumptive limb territories of early chick embryos. When FGF-2/FGF-8 beads are implanted in chick flank, an ectopic limb develops and SnR is irreversibly activated as early as 1 h. Ectopic Fgf10 and twist expression are activated much later at 17 and 20 h, respectively. FGF-10 can also induce SnR, but much later, and in this case activation occurs simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1995